If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20=4x
We move all terms to the left:
4x^2-20-(4x)=0
a = 4; b = -4; c = -20;
Δ = b2-4ac
Δ = -42-4·4·(-20)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{21}}{2*4}=\frac{4-4\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{21}}{2*4}=\frac{4+4\sqrt{21}}{8} $
| 3k–13=26 | | 3x+130+x=180 | | 7/10=r-8/5 | | 4x-20=4.60 | | 100=2x+200 | | -23x=138 | | (2/3)^5x=3/10 | | 2a-9a=a | | 1/2r+7/2=17/4+r | | 2/3x=76 | | 55=5x-6(-3x+10) | | 6.5a+13=71.5 | | x²+24x+80=0 | | 1/8z+1=-7/8z | | 0.7(3x+5)=-4.7 | | -10+8k-4k=8 | | 5x-1/12=5/12+4x | | -3(x+4)+21=14+4x | | 42=6x-2(4x-12) | | -3x+33=14+4x | | y3+1=6 | | s-$15=$15.63 | | 37.68÷3.14=x | | 28-2.2=11.6b-54.8 | | 20-t=14 | | -7x-2(-1x-14)=63 | | 9d-20-3d=-8 | | 63x=21 | | -2x-7(1x+9)=45 | | V^2-11v-14=0 | | 5a=-3(a-8)=-40 | | 3/4x-7/4=2 |